“Translation and Convergence for Future Medicine”
- 미래 의학을 위한 중개 및 융합연구
- Asan International Medical Symposium 2016
- Innovative Future for Medical Science & Technology -
- 2016년 6월 17일 (금) 서울아산병원 동관 6층 대강당 외 AIMS
Plenary Session II “의료기술및 R&D 변화의최신동향”
- Chairperson :김청수(서울아산병원비뇨기과교수)
13:30 ~ 14:15 Lecture 1 :의료분야에서의 빅데이터 :임상연구 및 진료를 위한 애널리틱스의 활용
- Speaker: David W. Bates (Harvard University, Brigham and Women’s Hospital, USA)
- Rising costs
- Moneyball, Boston red sox, walmart, watson
- Big data 1M - 1giga(human genome) - 1 peta
- EHR, Genetics, Diagnostics, Mobile devices,
- Meaningful Use - EHR - growing.
- Big data concepts
- Validation is important!
- Big data and research - Brigham and Women’s - Pathology ePath, Immunology Big data Genomic platform
- Essential for future approach
- RPDR - New entity at partners healthcare = CMS, biobank, survey data, imaging, notes repo
- Big data in clinical care
- 5% patients ~ 50% cost
- iCMP claims-based approach - 3000 patients
- multiple parameters - wearable devices - continuous supervision on general care floors
- Adverse events
- PCORnet - not popular
- New Sources - the trajectory of mobile apps
- Literature Review - 7301 titles and abstracts
- App Review - iTunes, Google Play -> possibly useful 16
- Professional Society Review -
- Ginger.io https://ginger.io/
- to drive better health outcomes through the use of passive mobile data and behavioral analytics.
- !!! Example projects - Predictive Modeling
- What we need to do all these
- Analytics tools, repo, data warehouse, epic reporting (Clarity reporting database)
- Clinical data - ubiquitous
- !!!!Novel sources are most likely to provide marginal improvement - social, mobile!!!!
- Predictions / Implications
- Transformative as the internet
- Killer app - Google Maps
Questions
- 김규표 교수님 - Social media and health care
- 김청수 교수님 - Government and insurance - reasonably difficult to acquire - costly.
14:15 ~ 15:00 Lecture 2 :합성 항체에서 합성 단백질로
- Sachdev Sidhu (University of Toronto, Canada)
- The Donnelly Centre - From systems biology to systematic treatment
- Therapeutic antibody revolution - highly versatile, numorous diseases
- Ab-durg conjugates, fragment, bispecific, engineered cells
- Targeting cancer with antibodies
- !!! problem - small populations - boutique treatment!!!
- In vitro protein evolution
- Affinity, specificity enhanced
- Antibody molecules
- binding site of Ab
- highly optimized - automatic mutation of binding site
- Toronto Synthetic Antibody Library - highly diverse - Herceptin
- PHAGE - Genentech
- only changed the function, not others
- Functional genomics - Large-scale, industry-quality Ab generation - Preclinical biology | The middle was not quite available but now it’s doable.
- Cancer Antibody TRAC antibodies - bacerial pathogens
- High yield and high affinity Fabs from naive library - 1394 total against 80 targets
- http://sites.utoronto.ca/sidhulab/about.html
- natural - synthetic Ab - synthetic proteins - synthesizable proteins
- D-protein therapeutics.- samll proteins synthesized entirely rom D-amino acids, Ab like affinity, specificity and stability,
- in vitro d-protein advantages - longer circulating HL than L-proteins - less immunogenicity - ersistant to metabolism in plasma
Parallel Session I “의료분야에서의빅데이터” Chairperson :김태원(서울아산병원임상의학연구소장) [대강당]
15:20 ~ 18:00
Lecture 1 :전자의무기록에 기반한 임상 빅데이터 연구 Alexander Turchin (Harvard University, Brigham and Women’s Hospital, USA)
- Data warehouse : integrates data from multiple sources - i2b2 | ABLE | OHDSI
- who entered the data? Wrong input to public repo (DKA for 2 years!)
- Data quality
- Raynaud’s syndrome - Omega3 (Failure)
Lecture 2 : 의료분야에서의 빅데이터 분석 Tom Lawry (Microsoft Corp., USA)
- 8 seconds = Concentration time
- Analytics Convergence Zone - Clinical data, Geo/Social/Environmental data/Claims&Cost Data/Pharma&Life Sience Data, Patient & Citizen Data
- https://powerbi.microsoft.com/ko-kr/ !!!!! 반드시 사용해 볼것. 좋은 Visualization.
- http://www.ciokorea.com/news/29118
Lecture 3 :생물기작 기반 암 오믹스 데이터 분석 기법
- speaker: 김 선 (서울대학교 생물정보연구소)
- https://sites.google.com/site/biohealthinformaticslab/sun-kim
- http://bioinfo.snu.ac.kr/main/index.php
- DNA, RNA, Protein이 중요 - Somatic mutation뿐만 아니라
- Transcriptome (RNA-sequencing data)
- 싸고 쉽다.
- 그에 비해 Underestimated되어 있다.
- Breast cancer
- 가장 잘 알려진 암종.
- 21-gene Oncotype DX !!! http://www.oncotypedx.com/
- PAM50 - Prediction analysis of microarray by 50 gene classifier !!! - Survival 예측하는 Gold-standard
- Transcriptome Data analysis http://prosigna.com/x-us/overview/
- Pathway (context) analysis는 과연 informative한가?
- A Critical Evaluation of Network and Pathway-Based Classifiers for Outcome Prediction in Breast Cancer (PLoS One 2012) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0034796
- 50개를 랜덤하게 취해도 유의미하게 나왔다. 아무거나 취해도 유의미하게 만들 수 있다. (Negative result!)
- “Based on these results there is currently no reason to prefer prognostic classifiers based on composite features over single genes classifiers for predicting outcome in breast cancer.”
- 따라서 50개를 정할 때 기능적인 면을 고려해야 한다.
- PPI-based Pathway Decomposition !!! - 우리의 분류를 기반으로 Survival plot를 그리면 확연한 차이가 난다.
- Decomposed pathway and its activity measurement Using RNA-sequencing data
- 이러한 알고리듬으로 RNA-sequencing data 분석 (1138개의 sample을 사용)
- TCGA data (Breast Cancer)
- 기본적으로 information theory를 응용한 것이다.
- Subtype과 발현량의 ranking에 따라 score를 매긴 후 distinguishing할 수 있다.
- 클래스마다 차이가 확연한 Subnetwork A는 좋은 모델
- 클래스마다 차이가 없으면 Subnetwork C는 나쁜 모델. 우리는 좋은 모델을 택해야 한다.
- Top10 Regulated pathways by TF/miRNA
- mir-30a (basal cell cycle activation) -> mir-149, let-7b, mir-30a
- Sub-network mining approach
- Experimental validation requires collaborators who enjoy new approaches.
- 혹시 talk를 들으시고 관심있으면 Contact.
http://www.amc.seoul.kr/asan/academy/event/eventDetail.do?eventId=572 http://aims.amc.seoul.kr/asan/depts/aims/E/deptMain.do