간단한 linear regression에 대한 R 코드.
참고자료
x <- c(30, 20, 60, 80, 40, 50, 60, 30, 70, 60)
y <- c(73, 50, 128, 170, 87, 108, 135, 69, 148, 132)
plot(x, y)
beginr::plotlm(x, y)
## [[1]]
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10 2.50293945 3.995302 3.975760e-03
## x 2 0.04696682 42.583252 1.019588e-10
##
## [[2]]
## [1] 0.9956076
r8.lm <- lm(y ~ x)
summary(r8.lm)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0 -2.0 -0.5 1.5 5.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.00000 2.50294 3.995 0.00398 **
## x 2.00000 0.04697 42.583 1.02e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.739 on 8 degrees of freedom
## Multiple R-squared: 0.9956, Adjusted R-squared: 0.9951
## F-statistic: 1813 on 1 and 8 DF, p-value: 1.02e-10
confint(r8.lm)
## 2.5 % 97.5 %
## (Intercept) 4.228211 15.771789
## x 1.891694 2.108306
plot(ellipse::ellipse(r8.lm), type="l")